日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美日韩在线观看一区二区| 欧美午夜久久久| 亚洲人成在线播放| 亚洲国产美女久久久久| 亚洲国产专区校园欧美| 国产精品国产精品国产专区不蜜| 亚洲成色www久久网站| 校园春色综合网| 亚洲午夜久久久久久尤物| 久久久99精品免费观看不卡| 亚洲一区二区欧美| 国产精品普通话对白| 久久成人精品一区二区三区| 亚洲国产91精品在线观看| 久久精品色图| 欧美日韩黄视频| 国产精品一区二区久久| 亚洲国产精品一区二区www| 久久激情婷婷| 韩国精品一区二区三区| 久久精品毛片| 国产亚洲欧美另类一区二区三区| 欧美国产日韩亚洲一区| 久久伊人免费视频| 亚洲精品免费看| 91久久久在线| 国产一区二区三区高清播放| 男人的天堂成人在线| 在线电影一区| 在线视频精品| 最近看过的日韩成人| 一二三四社区欧美黄| 91久久精品www人人做人人爽| 久久综合久久美利坚合众国| 欧美日韩视频在线一区二区| 一区二区日韩欧美| 亚洲免费视频一区二区| 国模大胆一区二区三区| 欧美成年网站| 欧美一区二区性| 国产区精品视频| 国产日韩亚洲欧美| 一区精品在线播放| 欧美电影电视剧在线观看| 欧美成ee人免费视频| 国产在线欧美日韩| 国产精品乱码妇女bbbb| 中文久久乱码一区二区| 欧美女同在线视频| 久久阴道视频| 亚洲最新合集| 欧美日本一道本| 国产视频综合在线| 亚洲欧美日韩国产中文在线| 一本一本久久a久久精品牛牛影视| 久久亚洲视频| 欧美一区二区私人影院日本| 国产精品高潮粉嫩av| 在线日韩中文字幕| 国产欧美日韩伦理| 欧美成人午夜免费视在线看片| 亚洲精品在线看| 亚洲黄色大片| 国产精品欧美日韩一区二区| 免费一区二区三区| 欧美一区在线直播| 久久人人超碰| 夜夜嗨av一区二区三区| 国产精品欧美日韩一区| 国产一区二区精品丝袜| 欧美日韩和欧美的一区二区| 国内精品美女在线观看| 国内精品久久久久久久果冻传媒| 欧美一区二区黄色| 久久久噜噜噜久久狠狠50岁| 亚洲性线免费观看视频成熟| 久久精品1区| 欧美国产综合| 国产亚洲欧美激情| 狠狠色综合一区二区| 欧美激情综合色综合啪啪| 久久久久9999亚洲精品| 亚洲综合电影一区二区三区| 欧美不卡视频一区发布| 一区二区三区在线视频播放| 国产欧美日韩视频在线观看| 亚洲高清视频在线观看| 欧美激情精品久久久久久蜜臀| 欧美在线视频一区二区| 一区二区三区四区五区精品| 国产精品裸体一区二区三区| 国产精品一级| 国产精品一区二区久久精品| 欧美乱大交xxxxx| 99re6热只有精品免费观看| 欧美视频在线播放| 在线看无码的免费网站| 亚洲国产裸拍裸体视频在线观看乱了| 国产综合亚洲精品一区二| 国产精品揄拍500视频| 欧美a级一区| 欧美色网一区二区| 在线观看中文字幕不卡| 国产精品久久久久免费a∨大胸| 美女视频一区免费观看| 欧美成人午夜剧场免费观看| 欧美资源在线| 亚洲第一在线视频| 久久在线免费观看视频| 狂野欧美一区| 亚洲精品国产精品国自产在线| 欧美午夜精品久久久久久久| 久久激情久久| 欧美视频在线观看| 欧美一区二区三区在线| 午夜精品久久久久久久久久久| 艳妇臀荡乳欲伦亚洲一区| 亚洲第一综合天堂另类专| 亚洲承认在线| 国产女人18毛片水18精品| 午夜精品福利一区二区三区av| 国产欧美日韩91| 国内精品一区二区三区| 亚洲每日在线| 久久精品日产第一区二区三区| 在线亚洲精品| 国产噜噜噜噜噜久久久久久久久| 快射av在线播放一区| 欧美丝袜一区二区| 久久夜色精品一区| 久久久精品国产免费观看同学| 亚洲视频一区二区在线观看| 国产精品国产三级国产aⅴ无密码| 欧美日韩福利视频| 亚洲美女少妇无套啪啪呻吟| 亚洲福利精品| 久久精品国内一区二区三区| 宅男噜噜噜66国产日韩在线观看| 欧美成人免费观看| 欧美一区二区三区四区在线| 欧美日韩网址| 欧美性色视频在线| 国产网站欧美日韩免费精品在线观看| 欧美福利电影在线观看| 欧美国产先锋| 亚洲精品一区二区在线观看| 亚洲国产精品一区制服丝袜| 国产精品区免费视频| 亚洲国产精品高清久久久| 亚洲精品免费网站| 久久午夜影视| 国产伦精品一区二区三区四区免费| 亚洲一区二区三区四区五区午夜| 欧美日本免费一区二区三区| 国产日韩专区在线| 一区二区三区欧美日韩| 亚洲九九精品| 欧美成年人视频网站欧美| 久久gogo国模裸体人体| 欧美激情aⅴ一区二区三区| 亚洲黄色片网站| 美女任你摸久久| 欧美视频在线免费看| 国产九九精品|