日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP34212、代做Java/C++編程
代寫COMP34212、代做Java/C++編程

時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP34212 Cognitive Robotics Angelo Cangelosi 
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Release: February 2025
Submission deadline: 27 March 2025, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
in particular address the learning outcome LO1 on the analysis of the methods and software 
technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a 
summary discussion of various applications of DNN to different robotics domains/applications. 
Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
for this application. In either case, the report should show a good understanding of the key works in 
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
analyse new training simulations. This will allow you to evaluate the role of different 
hyperparameter values and explain and interpret the general pattern of results to optimise the 
training for robotics (vision) applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
robotics vision datasets (e.g. iCub World1
, RGB-D Object Dataset2
). You are also allowed to use 
other deep learning models beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
describe and discuss the training simulations done and their context within robotics research and 
applications. The report must also include the link to the Code/Notebook, or add the code as 
appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
models to generate your report. Demonstrate a credible analysis and discussion of your own 
simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
personalised analysis of the literature backed by cited references.
COMP34212 Cognitive Robotics Angelo Cangelosi 
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
citations backing your academic review and statements (marks given for 
clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
methods considered in robotics; credible personalised critical analysis of the deep learning 
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with 
explanation and justification of the dataset, the network topology and the hyperparameters 
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
and appropriateness of the network topology; hyperparameter exploration approach; data 
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing 
simulations; include appropriate figures and tables to support the results; depth of the 
interpretation and assessment of the quality of the results (the text must clearly and 
credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
code/notebook (link to external repository or as appendix) is not included.
Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:出評 開團工具
  • 下一篇:INFO20003代做、代寫SQL編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产自产高清不卡| 国产欧美二区| 亚洲欧美国产另类| 国产欧美日韩另类一区| 欧美日韩妖精视频| 国产精品一香蕉国产线看观看| 亚洲一区二区三区影院| 欧美性大战久久久久久久蜜臀| 国产在线视频欧美| 欧美视频日韩视频| 免费观看成人www动漫视频| 欧美午夜精品久久久久久久| 亚洲精品日韩久久| 亚洲精品一区二区三区福利| 久久精品国产清高在天天线| 伊人成人网在线看| 国产人妖伪娘一区91| 久久久www成人免费精品| 国产精品久久久久久久电影| 欧美日韩午夜在线视频| 欧美精品一线| 亚洲免费在线视频| 91久久精品日日躁夜夜躁欧美| 国产精品视频网址| 欧美日韩国产专区| 9国产精品视频| 国产欧美精品一区| 欧美在线free| 亚洲经典一区| 国产精品一二一区| 亚洲欧美成aⅴ人在线观看| 午夜精彩国产免费不卡不顿大片| 一区二区三区毛片| 亚洲视频在线观看三级| 欲色影视综合吧| 一区二区久久久久| 国产精品久久久久久久app| 久色成人在线| 亚洲精品美女在线| 久久中文在线| 国产欧美日韩视频一区二区三区| 在线亚洲+欧美+日本专区| 国产精品日韩一区二区三区| 欧美成人精品激情在线观看| 亚洲国产另类 国产精品国产免费| 91久久久久久久久| 99这里只有精品| 欧美性事在线| 亚洲欧美日本国产有色| 欧美中文日韩| 依依成人综合视频| 欧美一区二区三区四区夜夜大片| 亚洲激情专区| 欧美精品在线极品| 欧美色精品在线视频| 狠狠v欧美v日韩v亚洲ⅴ| 欧美在线综合视频| 国产在线播放一区二区三区| 亚洲青色在线| 国产精品少妇自拍| 国产精品xxxav免费视频| 国内精品久久久久久久影视蜜臀| 在线国产亚洲欧美| 欧美一区永久视频免费观看| 亚洲国产高清高潮精品美女| 日韩视频中午一区| 最新中文字幕亚洲| 亚洲精品久久久久久久久久久久| 亚洲国产91| 欧美国产激情| 亚洲砖区区免费| 亚洲毛片一区二区| 国产精品入口66mio| 一区二区三区日韩在线观看| 欧美性色aⅴ视频一区日韩精品| 香蕉久久夜色精品国产| 亚洲电影第三页| 久久久久九九九九| 欧美人与性动交a欧美精品| 久久久久看片| 亚洲摸下面视频| 欧美精品免费观看二区| 欧美日韩免费观看一区| 久久精品麻豆| 精品二区视频| 亚洲自拍偷拍一区| 亚洲午夜精品国产| 国产精品九九久久久久久久| 亚洲精品久久久久久久久| 欧美影院成年免费版| 很黄很黄激情成人| 国产日韩在线不卡| 久久综合网络一区二区| 欧美高清一区二区| 亚洲第一区在线| 国产乱码精品一区二区三区忘忧草| 久久青青草原一区二区| 欧美一区二区观看视频| 久久久久国产免费免费| 国产精品私房写真福利视频| 在线播放精品| 国模私拍视频一区| 国产一区二区三区久久悠悠色av| 99国产精品99久久久久久| 欧美精品在线观看一区二区| 看片网站欧美日韩| 国产日韩欧美精品一区| 久久九九全国免费精品观看| 免费成人av| 欧美精品国产精品日韩精品| 亚洲欧美日韩另类精品一区二区三区| 狠狠色丁香久久综合频道| 国产美女搞久久| 亚洲一区二区三区涩| 午夜视频在线观看一区二区三区| 亚洲国产美女久久久久| 亚洲一卡久久| 国产精品久久久久久久浪潮网站| 亚洲综合色激情五月| 亚洲精品中文字幕有码专区| 在线欧美日韩| 欧美精品手机在线| 国产精品免费网站在线观看| 国产日韩视频一区二区三区| 9人人澡人人爽人人精品| 久久国内精品自在自线400部| 国产视频一区二区在线观看| 欧美色欧美亚洲高清在线视频| 91久久夜色精品国产九色| 亚洲精品系列| 午夜在线一区| 欧美精品在线一区| 亚洲经典在线看| 91久久一区二区| 玖玖玖国产精品| 在线亚洲精品福利网址导航| 亚洲级视频在线观看免费1级| 国产精品视频99| 一区二区91| 国产亚洲一本大道中文在线| 欧美大片在线观看一区二区| 一本色道久久综合一区| 在线精品国产成人综合| 久久久久成人网| 欧美成人午夜激情| 国产精品久久综合| 麻豆精品视频在线| 欧美福利一区二区| 国产精品福利久久久| 伊人成人开心激情综合网| 国产精品久久久久久久久搜平片| 久久这里只有精品视频首页| 欧美电影免费观看网站| 亚洲国产一区视频| 免费中文字幕日韩欧美| 性欧美大战久久久久久久免费观看| 久久精品国产一区二区电影| 亚洲最新合集| 久久久久久久久蜜桃| 99视频精品全国免费| 欧美一区二区三区在| 伊人狠狠色j香婷婷综合| 欧美在线三级| 欧美国产激情二区三区|